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Modelling the relationship between parental stock size and subsequent recruitment of fish to a fishery is often required when deriving
reference points, which are a fundamental component of fishery management. A non-parametric approach to estimate stock - recruit-
ment relationships is illustrated using a simulated example and nine case studies. The approach preserves compensatory density
dependence in which the recruitment rate monotonically decreases as stock size increases, which is a basic assumption of commonly
used parametric stock —recruitment models. The implications of the non-parametric estimates on maximum sustainable yield (MSY)
reference points are illustrated. The approach is used to provide non-parametric bootstrapped confidence intervals for reference
points. The efficacy of the approach is investigated using simulations. The results demonstrate that the non-parametric approach
can provide a more realistic estimation of the stock-recruitment relationship when informative data are available compared with
common parametric models. Also, bootstrap confidence intervals for MSY reference points based on different parametric stock—
recruitment models often do not overlap. The confidence intervals based on the non-parametric approach tend to be much
wider, and reflect better uncertainty due to stock-recruit model choice.

Keywords: Beverton-Holt model, confidence intervals, hockey-stick model, monotone spline, Ricker model.

Introduction RPs take into account other aspects of stock productivity,
Modelling the relationship between parental stock size (S) and re- ~ and an important example is described in the next paragraph.
production and subsequent recruitment (R) of juveniles to a  RPsare widely considered an essential part of well-managed fish-
fishery is widely recognized as a fundamental component of sus-  eries (e.g. Hilborn and Stokes, 2010; Hutchings and Rangeley,

tainable fishery management (Quinn and Deriso, 1999). For 2011). Reliable SR models are therefore important for successful
example, stock—recruit (SR) relationships are used to project fishery management.

future fish population dynamics in response to proposed manage- Maximum sustainable yield (MSY) RPs have been adopted by
ment actions, and to determine management reference points ~ many national (e.g. the USA and New Zealand) and international

(Needle, 2002). Many fisheries are managed using reference
points (RPs), where prescribed actions should occur when stock
size or fishing mortality rates exceed RP values. Some RPs are
derived directly from the SR relationship. An example of this is
the spawning stock size corresponding to 50% of maximum re-
cruitment which may be taken as a biomass limit (Myers et. al.,
1994). This RP is usually estimated using an SR model. Other

fishery management agencies (e.g. IWC, ICCAT, IATTC, EU, and
NAFO). The fishing mortality rate that maximizes long-term yield
(Fumsy) is often taken to be an upper limit for management pur-
poses, while the resulting biomass at Fysy (i.e. Bysy) may be a
default target. Although using MSY RPs is not without criticism
(e.g. Hilborn, 2010; Legovi¢ et al., 2010), if these RPs are to be
used for management then it is important to have reliable
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A non-parametric approach to estimate stock—recruitment relationships

estimates of them. MSY RPs are essentially derived from long-term
stock projections over a range of fishing mortalities. If the projec-
tions are deterministic, then the calculation of MSY RPs is also de-
terministic. In this context, some theory has been developed
related to MSY calculations (see below). MSY RPs are determined
by the growth and mortality process of the stock, and by the age
pattern in fishing mortality. The SR relationship is a fundamental
component in the stock growth process. Consequently, the SR re-
lationship has a major impact on MSY RPs. In reality, the growth
and mortality processes will not be constant and will fluctuate de-
pending on other changes in the stocks ecosystem; however,
methods (e.g. Bousquet et al., 2008; Cadigan, 2011) to deal with
stochastic productivity are beyond the scope of this paper.

Parametric SR models are commonly used to compute MSY
RPs, especially when MSY calculations include inferring R outside
the range of observed stock sizes. A parametric SR model expresses
R as an analytic function of S and a small number of unknown para-
meters 6 that must be estimated. Two SR models commonly used
are the Ricker (RK; Ricker, 1954) and the Beverton—Holt (BH;
Beverton and Holt, 1957). There are other formulations (e.g.
Needle, 2002), and most have a compensatory mortality property
(CMP; e.g. Quinn and Deriso, 1999) in which the recruitment
rate (R/S) declines monotonically as S increases; that is,

dr/S) _
ds

Both the BH and RK have this property (see the Material and
Methods). Some models, such as the RK, have overcompensation
(Quinn and Deriso, 1999) in which dR/dS <0 at larger stock
sizes. The BH has pure compensation, in which compensation,
but not overcompensation, occurs for all values of S.

The CMP ensures that for any level of fishing mortality (F)
there is a unique equilibrium stock size and age distribution.
This equilibrium is determined by both the production of R
from S (i.e. the SR relationship) and the production of S from R
(survival and growth). A unit of R survives fishing mortality F
and natural mortality, and grows to produce some amount of S
over the lifetime of the cohort. The relationship is assumed to
be linear in R, with a slope determined by growth and survival
parameters. Let Z, = F S, + M, be the total mortality rate
which is the sum of age-specific fishing mortality (F times
selectivity, S,) and natural mortality (M,) rates. Let
A = Y9 exp(—Z,) be the cumulative per-recruit survival rate
to age a at the beginning of the year, and let w, and (), be the
stock weight and maturity at age a. For standard MSY calculations,
M,, S,, Q,, and w, are considered to be known and constant
over time. Mid-year parental stock size is given by
S(R,F) = RY % QuA e ESatM/2 The term e~ (FSatMa/2 g
dropped if S(R,F) is considered to be at the beginning of the
year. Mortality and growth parameters may be affected by S, but
this is beyond the scope of this paper. Using the Baranov catch
equation, the equilibrium fishery yield from a cohort is

Y(RF)=RY . Agc,{1 — e St} FZ—S
a

where ¢, is the catch weight-at-age. The intersection of the S(FR)
line as a function of R with F fixed, and the SR curve, determines
the equilibrium values of R and S at the fixed level of F [i.e. R,(F)
and S.(F); e.g. see Sissenwine and Shepherd, 1987]; that is, if
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SPR(F) = S(R,F)/R, which is independent of R, and if u(S) is the
SR function, then S.(F) is the x solution to u(x) = x/SPR(F) and
R.(F) = pf{S.(F)}. The equilibrium vyield is Y,(F) = Y{R,(F),F} and
the value of F that maximizes Y.(F) is Fysy- Buvsy 18 Se(Fumsy). If
u(S)/S declines strictly monotonically with S, then there is only
one intersection between S(R,F) and the SR curve. Otherwise,
there may be multiple intersections and potentially multiple S.(F)
values for some values of F. The CMP ensures that Y,(F) is continu-
ous in F with a well-defined maximum at Fysy.

The SR parameters 6 are usually estimated by minimizing the
log error sum of squares based on a time-series of SR observations,
although other estimation procedures have been advocated (e.g.
Walters, 1990; Jiao et al, 2004; Michielsens and McAllister,
2004). SR data are usually noisy, and both the BH and RK
models often fit the data almost equally as well. In this case, the
choice of model is a partially subjective decision, although there
may be a priori reasons based on the life-history characteristics
of the species to favour one model over the other (e.g. Quinn
and Deriso, 1999).This choice of SR model may have substantial
impact on MSY RPs and other RPs (e.g. Bravington et al., 2000;
Brodziak and Legault, 2005). The fitting of the SR relationship
at low S values will be influenced by values of R at high S values
for parametric models, and some researchers find this objection-
able. Characterizing this uncertainty and understanding its impli-
cations on management advice is important.

Some researchers have utilized non-parametric approaches as a
way to avoid the sensitivity of advice to parametric SR model
assumptions. Deriving RPs and associated measures of uncertainty
using a non-parametric SR model may account more fully for
model uncertainty. Evans and Rice (1988) estimated the probabil-
ity density function of R at a given S using non-parametric algo-
rithms based on the distribution of past R values at similar S
values. Cook (1998) used the LOWESS smoother (Cleveland,
1981) to fit an SR relationship and derive a fishing mortality RP.
Duplisea and Fréchet (2010, 2011) recently used a similar ap-
proach involving a cubic smoothing spline to derive a recruit-
ment—overfishing stock size RP. Bravington et al. (2000) noted
two problems with using the LOWESS smoother for fitting SR
relationships: (i) the choice of the amount of smoothing and (ii)
the possibility of biologically unreasonable fits. A LOWESS
smoother will not in general have the CMP and, therefore, may
not result in unique equilibrium results and MSY RPs. Cubic
smoothing splines will suffer from the same problems.
Bravington et al. (2000) proposed two non-parametric spline
smoothers with the CMP property. Their DIMPOS smoother
ensures CMP. Their CONCR smoother ensures smooth concavity,
which is a strong form of CMP. For example, the Ricker model is
CMP but not concave everywhere. Concavity implies CMP, but
not the reverse. Bravington et al. (2000) noted that these shape
restrictions on the smoothers greatly reduced the sensitivity of
SR estimates to smoothing parameters, and this basically addressed
their two concerns with the LOWESS approach.

Bayesian methods have also been used for non-parametric, or
less parametric, SR model fitting and RP estimation. Munch et al.
(2005) used a Gaussian process model approach for flexible model-
ling of SR relationships. Fronczyk et al. (2011) developed a more
general and fully non-parametric Bayesian approach based on a bi-
variate normal mixture model for the joint distribution of S and
log(R/S). Their goal was a flexible model for the joint density of
S and log(R/S) that could accommodate skewness, excess variabil-
ity, possible multimodalities, etc. The approaches of both Munch
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et al. (2005) and Fronczyk et al. (2011) do not ensure CMP.
Brodziak and Legault (2005) used Bayesian model averaging to es-
timate rebuilding targets under alternative hypotheses about SR dy-
namics. Their objective was to account for some of the uncertainty
in the SR model, including the form of the SR model (BH or RK),
error structures, and assumptions about prior information.
Simmonds et al. (2011) used a similar framework to Brodziak
and Legault (2005), but they performed a stochastic MSY evaluation
using random recruitment drawn from Bayesian model averaging of
two parametric SR models and three error distributions. Neither
Brodziak and Legault (2005) nor Simmonds et al. (2011) proposed
Bayesian model averaging as a semi-parametric SR model. Their
applications only partially accounted for SR model uncertainty
because they considered only two model choices.

In this paper the scam (shape constrained additive models)
package in R (Pya, 2012) is used to fit non-parametric SR curves
with CMP, and to derive “SR-non-parametric” yield curves. This
is an approach that should be easy to use for anyone familiar
with the R programming language. The focus is on describing
the range of SR relationships that are consistent with data, and
the implications of this range on MSY RPs. Bootstrap methods
are used to produce non-parametric confidence intervals (CIs)
for the SR relationship, and for MSY RPs. Some simulation
results are presented to examine the efficacy of estimates of Fysy
and Bysy based on the non-parametric SR approach compared
with estimates based on common parametric SR models.

Material and Methods

Let u(s) = E(R|S=5) denote the SR model, that gives the
expected value of R as a function of S. The BH model is
wis) =as/(B+s), a,B>0. It is not difficult to show that
d{u(s)/s}/ds =ma—xa/([3 +5)? is always negative so this model has
the CMP. The S w(S) = Rmax = «, and the value of S that cor-
responds to 50% of Rmax is $50% = . The slope at the origin is
Sao = a/B. The RK model is u(s) = asexp(—Bs), o, >0, and
d{u(s)/s}/ds = —aBexp(—PBs) is always negative so this model
also has the CMP. Rmax = a/Bexp(1) and Sao= . A closed
form solution for $50% does not exist, but it can be found nu-
merically. For this paper, both the BH and RK model parameters
(a and B) were estimated using the nls function in the R software
package (R Development Core Team, 2011), which is convenient
for producing bootstrapped parameter estimates. A segmented re-
gression SR model, often referred to as the hockey-stick (HS)
model (Barrowman and Myers, 2000), was also investigated. To
facilitate estimation using nls, a slightly smoothed version was
used which is described in Mesnil and Rochet (2010),

) = “[S /8 /e a>2+y2/4],

with y* = 0.1. Sao = 2@, Rmax 2= 2a8, and $50% = §.
Parameters were estimated by minimizing the log erfor sum of
squares. Occasionally, the nls minimization did not converge, par-
ticularly when bootstrapping parameter estimates. This was
usually because the optimum solution was a straight line
through the origin with a very large and unrealistic Rmax. This
is a common problem when fitting and bootstrapping SR
models (e.g. Overholtz, 1999). As a remedy, the BH and RK
models were constrained to have Rmax less than the maximum
value of R in the data. This was never a problem for the HS
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model, although for this approach it is necessary to constrain
Smin < 8 < Spax- The objective function is flat for values of &
outside this range. These constraints are practical but they can
result in inaccurate statistical inferences, especially when the con-
straints are not valid for the population model (e.g. Rmax is really
greater than the maximum value of R in the data).

The scam function in R (ver. 1.1-2; Pya, 2012) was used to fit
non-parametric SR curves with CMP. The scam function is part
of the scam package, which is similar to the mgcv(gam) package
(Wood, 2006, 2011) for fitting GAMs (generalized additive
models), except that scam allows for a variety of shape constraints
on the component functions of the linear predictor of the
GAM. The constraints involve monotonicity (increasing or
decreasing) with options to specify convex or concave shapes.
Both of these packages use spline smoothers for non-parametric
regression. Briefly, the data are assumed to be independent
and from an exponential family distribution (e.g. Normal,
Gamma, Binomial, etc.) with a mean u that is a partially linear
function of covariates zy,..., zg, and xi,..., X,; that is,
g(m) =6, + Zf:l Oz + 21]’-:1 fi(xj), where g is a smooth mono-
tone link function and the f;(x;) values are unknown smooth func-
tions of the x; covariates. The 6 and f(x;) values must be
estimated. In the remainder of this section, the j index in f is
dropped for simplicity, but basis functions and spline parameters
are required for each smooth function.

The spline method involves approximating f(x) as a linear
combination of q known spline basis functions [i.e. B}'(x),...,
B;”(x)] and unknown spline parameters (i.e. y;,..., ¥,) to esti-
mate, f(x) = ?:1 B!"(x)7y;, where m indicates the number of con-
tinuous derivatives. The scam package uses B-spline basis
functions (e.g. Wood, 2006) which have some attractive properties
for the purpose of scam. These basis functions are essentially a se-
quence of polynomials that are “centred” at different points across
the range of x. The spline function is a weighted average of these
polynomials. The basis functions require a sequence of “knots”
to be specified, and the knots determine the location and shape
of the polynomials. The scam package assumes the knots are
evenly spaced and cover the range of x. The number of knots (q)
should be large to avoid oversmoothing/underfitting; however,
this means that the number of spline parameters will usually be
large, which could result in overfitting of the data. To avoid the
latter problem, a penalty function is used to control the variation
in the y values (see below). A smoothing parameter determines the
contribution of the smoothing penalty function to the total fit
function, and the scam package uses generalized cross-validation
(GCV) or the Akaike information criterion to determine the
value of the smoothing parameter.

The scam package uses various shape restrictions on the vy
spline parameters to ensure the correct shape restrictions on f.
For example, if f(x) is strictly monotone increasing in x, then a suf-
ficient condition for this shape constraint when using B-splines is
v; > -1 for i=2,...,q. This is achieved by redefining the y
parameters as

N=B1%=06+ Z]izz eXp(,Bi), forj=2,...,q,

where the ; values are unknown but unconstrained parameters to
estimate. The penalty function is based on the squared differences
Bi — Bi—1 for j=2,..., q. However, the shape restrictions them-
selves add much smoothing, and model results are usually not
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that sensitive to the choice of smoothing parameter. A more thor-
ough description of the scam model approach is provided in Pya
(2010). Details of how scam was used for estimating the SR rela-
tionship are given in the Supplementary material.

Although scam results were not highly sensitive to the value of
the smoothing parameter, there were some differences especially
when extrapolating R for S values less than the minimum observed
or greater than the maximum observed, which could result in sub-
stantial differences in yield per recruit curves. To examine sensitiv-
ity to the smoothing parameter, scams were also computed for
degrees of freedom (df) fixed at 3 and 4. When the smoothing par-
ameter is very large, then scam produces a straight-line fit to
log(R/S) vs. S, which is the RK model. Hence, for a large smooth-
ing parameter, the RK and scam model estimates are identical.
When the SR data are very noisy, then the GCV statistic tends to
be minimized by a large value of the smoothing parameter, and
scam estimates will be very similar to RK estimates. Occasionally,
scam SR model estimates were linear for all values of S, similar
to the problems encountered with the BH and RK models. In
this case and for MSY RP calculations, Rmax was set at the
maximum of the observed recruitments. However, this was not ne-
cessary when calculating bootstrap CIs for the SR model, unlike
the BH and RK models. For these latter models, the nls bootstrap
function did not return a result when the SR parameters did not
converge.

Scam uses a Bayesian approach to obtain a covariance matrix
of the model coefficients and credible intervals for predictions.
The resulting standard errors were really large for extrapolations
and they did not seem to reflect the shape constraints. Also,
propagating these standard errors into uncertainties about MSY
RPs is not straightforward. A solution is to use bootstrap
methods to derive standard errors and CIs (e.g. Overholtz,
1999). Residuals were resampled with replacement and added to
model predictions to generate bootstrapped datasets. The scam
model was fit to the bootstrapped datasets using the same
smoothing parameter as determined for the original data, and
this was used to obtain bootstrapped predictions of the SR rela-
tionship. These bootstrapped predictions were then used to
compute CIs for MSY RPs, using the percentile CI method (e.g.
Efron and Tibshirani, 1993). Two thousand bootstrap resamples
were used. More accurate CI methods (e.g. bias-corrected, BC,,
bootstrap-t) are available but are beyond the scope of this
paper. Bootstrapped distributions for MSY RPs were obtained
using the intersections of the S per R line and the bootstrapped
SR curves. This could be done analytically for the parametric
SR models, and numerical methods were used for the non-
parametric SR curves. The bootstrapped distributions for MSY
RPs only reflect uncertainty about the SR relationship, and not
uncertainties about future stock weights, maturities, natural mor-
tality, and fishery selectivity.

The various estimators were illustrated using a simulated
example. The SR simulation-generating model was a 50:50
mixture of BH and RK models, each with Rmax = 600 x 10°
and S50% = 250 t. Also, some constant recruitment (i.e. 5% of
Rmax) was added to represent a small amount of recruitment im-
migration. This is recruitment from another stock that is trans-
ported to the area of the stock in question where it merges with
this stock. This is similar to the open-mixture model considered
in Munch et al. (2005). One hundred SR observations were gener-
ated based on a broad range of S values; that is, lognormal with
mean 1000 and a log s.d. of 1. Lognormal observations of R

59
Table 1. Stocks and sample sizes (n).
ID Stock name, area n
1 Cod (Gadus morhua), Subdivision 25-32 44
2 North-East Arctic cod (Gadus morhua), Subareas | and Il 63
3 lIcelandic cod (Gadus morhua), Division Va 54
4 Faroe Plateau cod (Gadus morhua), Subdivision Vb1 49
5  Cod in Division Vla (Gadus morhua), West of Scotland 33
6  Cod in Division Vlla (Gadus morhua), Irish Sea 43
7  Cod in Divisions Vlle-k (Gadus morhua), Celtic Sea 40
8  North-East Arctic saithe (Pollachius virens), Subareas | and Il 49
9  Plaice in Division Vlle (Pleuronectes platessa), Western 31

Channel

Data source: ICES Data Centre Stock Summary Database (http://www.ices
.dk/datacentre/StdGraphDB.asp).

were generated using a log s.d. of 0.2. This is an SR-informative
data generator, which was chosen to avoid problems with data de-
ficiencies. Such problems will be highlighted later in real data
examples. The various SR models were estimated and used to
derive MSY RPs. Biological parameters (i.e. weights, maturities,
etc.) for MSY RPs were taken as those for Barents Sea cod (see
Table 1). The simulation true values for Fygy and Bysy were
based on the open-mixture model without error.

This basic procedure was also repeated 1000 times, and the
results were used to approximate the bias and mean squared
error (average squared difference in estimates and true value) of
the various estimator of Fy;gy and Bysy.- A subtle difference was
the way the S values were generated. The procedure above will
occassionaly produce an anomalous S value that can cause conver-
gence problems for the parametric models. Such anomalies are not
realistic because S values are usually highly autocorrelated in prac-
tice. As a remedy for this problem, the log(S) values were gener-
ated from an AR(1) process with a correlation of 0.5 and a
stationary variance of 1, and these were used to generate R
values. Lognormal bias correction was applied so that E(S) =
1000. These simulations were repeated using the BH and RK
models as the simulation-generating models. The purpose of this
was to examine the potential loss of efficiency in using a non-
parametric approach compared with the correct parametric
model.

The various estimators were also applied to real SR datasets
(see Table 1) obtained from the ICES Data Centre Stock
Summary Database (see http://www.ices.dk/datacentre/index
.asp), which was accessed in January 2012. Stocks were chosen
based on visual evidence of density dependence in R and also
based on the availability of biological parameters for yield per
recruit analyses. This information is provided in the Yieldrecruit
tables of the database and includes the stock assessment range
of ages, and age-specific values for the proportion mature,
natural mortality, fishery selectivity, catch weights, and stock
weights. Not all stocks in the database had this information.
Data for some stocks will change in the future as new estimates
become available. The data are only used to illustrate the
methods, and no conclusions are otherwise drawn about these
stocks. Some of the stocks were also considered by Fronczyk
et al. (2011), and their results demonstrated that their non-
parametric SR model does not ensure the CMP, and some of
their model predictions had curious behaviours, such as transient
increases in productivity as stock size increased, which do not
seem realistic.
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Results

The potential benefits of the non-parametric SR estimator are first
illustrated using a simulated example involving a somewhat com-
plicated mixture SR relationship. The BH, RK, and HS models did
not fit the simulated data well (Figure 1; Table 2). Systematic dis-
crepancies between model fits and the data were apparent.
However, scam with the smoothing parameter selected to minim-
ize the GCV statistic tracked the trend in the data well, and the true
(i.e. simulation generator) SR relationship (grey curve) is mostly
contained within the 95% bootstrapped CIs. The scam smoother
had 6 df, whereas the parametric models only had 2 df. The equi-
librium yield curve inferred from scam was very similar to the
curve based on the true SR relationship (Figure 2), whereas this

N. G. Cadigan

was not the case for the BH, RK, and HS models. Bootstrapped
CIs for Fysy based on the BH, RK, and HS models did not
include the value based on the true SR curve (Table 2). Only the
Bysy CIs based on the scam and BH models contained the true
Bysy: MSY RPs based on the non-parametric smoother were
very accurate.

The results from the 1000 simulations were consistent with the
above example. The scam model had the lowest bias and the
second lowest root mean squared error (RMSE) for Fygy and
the lowest RMSE for Bysy (Table 3). The scam model also had
low bias when data were generated from BH or RK models,
although the approach was less efficient (i.e. higher RMSE) than
the correct parametric model. The ratio of RMSE for the correct
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Figure 1. Model fits. See Table 2 for model names. Shaded regions indicate 95% bootstrapped confidence intervals based on the

non-parametric scam model. The SSB axis is in the natural log scale.

€T0Z ‘P2 AInC uo puejpunovaN Jo A1slBAlun feUows A e /Hio'sfeuno [piojxoswisaoi/:dny woly papeojumod


http://icesjms.oxfordjournals.org/

A non-parametric approach to estimate stock—recruitment relationships 61

Table 2. Stock-recruit (SR) model fits and associated MSY reference points for a simulated example.

Percentiles Percentiles
FMSY - BMSY -
SR model MSE df GCvV Est LCI uci Est LCI uci
Scam 0.030 6.0 0.034 0.44 0.39 0.50 1187 1028 1397
HS 0.056 2.0 0.058 0.54 0.54 0.54 773 737 808
BH 0.065 20 0.067 0.41 0.38 0.44 1110 969 1247
RK 0.102 2.0 0.106 0.41 0.39 0.43 1605 1526 1701

MSE is the mean squared lognormal residual, df is the model degrees of freedom, and GCV is the generalized cross-validation statistic.

HS, hockey-stick; BH, Beverton—Holt; RK, Ricker.

Estimates (Est) are followed by 2.5th (LCl) and 97.5th (UCI) bootstrap percentiles. Fysy = 0.45 and Bysy = 1158 based on the true SR relationship.

0 “eeeda=RK

| [ i [ |
02 04 06 08 1.0

Fishing mortality

Figure 2. Equilibrium yield curves for different SR models. The true
curve is based on the SR simulation generating model. See Table 2 for
SR model names.

BH model was 7 for Fysy and 4 for By;sy. The efficiency of the scam
model was much better when the true SR was RK. Estimates of
Fyisy and Bysy based on the HS model had substantial bias. The
HS Fysy estimates were always constant and equal to F,,,,—the
value of F that maximizes yield per recruit. When averaged over
the three SR simulation scenarios, the scarm model had the
lowest RMSE for Fy;sy and Byisy. Convergence in the simulations
was very good, with only 1-2 cases not converging for either the
BH or HS models. The RK and scam models always converged.
The scam fits for five of the nine real data examples were iden-
tical to the RK model fits when the scam smoothing parameter was
estimated by minimizing the GCV statistic (i.e. scam GCV;
Figures 3 and 4). This was the case for stocks 2, 4, 5, 7, and
9. For these stocks, the scam GCV and RK fits are coincident in
Figures 3 and 4, and only the scam curves are visible. For all
nine stocks, the fitted scam GCV had df < 4, which is why the
scam GCV curves are smoother than the scam fits when df was
constrained to be 4 (i.e. scam df =4). The scam df =3 results
were smoother than the df =4 results, as expected, but overall
these results were similar. For simplicity, the scam df = 3 results
are not shown in Figures 3—6. The overall pattern was that the

BH and scam models had the same or higher Sao values
(Figure 4) than the RK model, and the RK and scam models
usually had lower Rmax values than the BH models (Figure 3).
The HS fits are not shown in Figures 3 and 4 to simplify the pres-
entation, but they resulted in the lowest Sao and Rmax values com-
pared with the RK, BH, and scam models.

The GCV statistics were mostly similar for all six SR models (i.e.
HS, RK, BH, scam df = 3, scam df = 4, scam GCV) for each stock,
indicating similar fits to the data. Over all stocks, the maximum
GCV (for the six SR models) was at most 18% greater than the
minimum GCV, and on average it was 8% greater. The HS
model did not fit as well for stocks 1 and 7, and, after discarding
this model, the maximum GCV was 5% greater than the
minimum. Patterns in the residuals were also similar (Figure 5).
Plotting the raw SR residuals from each model on the same
panel was not informative; therefore, model-specific trends in resi-
duals were inferred using the loess smoother (R Development Core
Team, 2011) with a span of 0.5. Smoothed trends were interpo-
lated over a mesh of 1000 S values within the range of observed
S values. The scam df = 4 model resulted in the lowest mean abso-
lute smoothed error. This error was ranked across models for each
stock. The average ranks across stocks were: 1.0 (scam df = 4), 2.7
(scam df = 3), 3.3 (scam GCV), 4.1 (RK), 4.9 (BH), and 5.0 (HS).
Interestingly, the smooth pattern in residuals was similar for eight
of nine stocks (Figure 5). This pattern was a decreasing trend
(from positive to negative residuals) at low S values, followed by
an increase and then a further decline or a levelling off. The excep-
tion is stock 2 (i.e. Barents Sea cod). Possible causes of this pattern
are considered in the Discussion.

Bootstrap CIs for the two scam models in Figure 3 (i.e. scam
GCV and scam df = 4) were very wide outside the range of the S
data. Fits in this region are only determined by the monotonicity
shape constraint on R/S and the second derivative penalty func-
tion. Bravington et al. (2000) reported a similar finding.

The equilibrium yield curves derived using the various SR
models differed substantially for some stocks (Figure 6). The
crash behaviour associated with the HS model is well known
(see Mesnil and Rochet, 2010). An overall pattern was for higher
yields implied by the BH model at low F values compared with
the other models, and lower yields at low F values implied by
the scam df =4 model. The high BH yields at low F values
usually involve extrapolations beyond the range of SR data.
Conversely, at high F values, the scam df =4 model indicated
the highest yields, and the RK and HS models resulted in lower
yields, including zero yields. Values for Fygsy (Figure 7) and
Byisy (Figure 8) differed substantially among methods for many
of the stocks (i.e. 2, 3, 5, 6, 7, and perhaps 9). The Fysy values

€T0Z ‘P2 AInC uo puejpunovaN Jo A1slBAlun feUows A e /Hio'sfeuno [piojxoswisaoi/:dny woly papeojumod


http://icesjms.oxfordjournals.org/

62 N. G. Cadigan

Table 3. Percentage bias and root mean squared error (RMSE) of estimators of Fysy and Bysy derived from four stock - recruit models
(rows) based on 1000 simulations from three population models (columns).

FMSY BMSY
SR model
Bias RMSE Bias RMSE

BH RK MIX BH RK MIX BH RK MIX BH RK MIX
Scam 2.0 0.2 -1.4 139 2.7 9.2 0.2 0.0 1.8 191 3.8 13.7
HS 55.1 9.9 73 55.1 929 73 —-47.2 -232 -22.1 473 23.2 223
BH 0.1 -234 -16.5 20 24.7 16.7 03 6.3 17.7 4.8 28.0 19.3
RK 15.7 0.1 6.1 19.5 1.7 133 225 —0.1 28.1 342 2.0 422

The models are: BH, Beverton—Holt; RK, Ricker; HS, hockey-stick; MIX, mixture model.

1 I T I

200 600 1200

Recruitment (millions)

200 600 1000

g Scam GCV

154 o =™ = Scam df=4
- == BH
o ,°=°= RK

10

5

0 0 - 0 -

1 I I I 1 I Ll Ll T T

500 1500 0O 10 20 30 4 2 4 6 8 10

Spawning Stock Biomass (thousand tonnes)

Figure 3. Model fits to SR data (points) for nine stocks, with stock IDs listed at the top of each panel. See Table 1 for stock names and Table 2
for model names. Shaded regions indicate 95% bootstrapped confidence intervals based on the non-parametric scam model with df = 4
(lighter shading) or smoothing parameter selected to minimize GCV (darker shading).

€T0Z ‘P2 AInC uo puejpunovaN Jo A1slBAlun feUows A e /Hio'sfeuno [piojxoswisaoi/:dny woly papeojumod


http://icesjms.oxfordjournals.org/

A non-parametric approach to estimate stock—recruitment relationships 63

3.5
3.0
2.5
2.0
1.5
1.0\
0.5 s,

004 = =

4
60 100 5 10 15 20
5
6 - Scam GCV
2 = = = Scam df=4
5 - - - - BH
e===== RK

Recruit per spawner

10 15 20

Spawning Stock Biomass (thousand tonnes)

Figure 4. Model fits to recruit per spawner data (points) for nine stocks, with stock IDs listed at the top of each panel. See Table 1 for stock
names and Table 2 for model names. Shaded regions indicate 95% bootstrapped confidence intervals based on the non-parametric scam
model with df = 4 (lighter shading) or smoothing parameter selected to minimize GCV (darker shading). The biomass axis is in the natural

log scale.

were ranked across models for each stock. Fyisy based on the BH
model had the lowest average rank across stocks (1.8), followed
by Fusy values based on the scam df =3 (3.1) scam GCV (3.4),
scam df =4 (3.4), RK (4.1), and HS (5.2) models. For six of
nine stocks, the BH-based Fyisy was lowest among the five
methods (Figure 7). The average ranks for By;sy were: HS (1.6),
RK (3.1), scam GCV (3.3), scam df =3 (3.9), scam df = 4 (3.9),
and BH (5.2). The HS-based Byisy was the lowest for seven
stocks and the BH-based Byisy was highest for six stocks.
Bootstrapped CIs for Bygy were usually right-skewed. CI
widths were averaged across stocks for each method. Fygy CIs
based on the HS model were the most narrow (0.05), followed

by those based on the BH (0.18), RK (0.23), scam GCV
(0.33), scam df =3 (0.97), and scam df =4 (1.88). Similarly,
Bysy CI widths were: HS (89), RK (200), scam GCV (349),
BH (495), scam df =3 (1356), and scam df =4 (1623). The
scam df =4 confidence limits for Fysy, particularly the upper
limit, were usually much greater than those of the other
methods. Bravington et al. (2000) reported a similar result for
the Fcrash RP, in which upper confidence limits were poorly
defined using a non-parametric SR model. The range, over
stocks, of the ratio of the largest to the smallest values of esti-
mates of Fysy for each of the 6 SR models was 1.4—2.3. This
range was 1.6—4.6 for Bysy.
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Figure 5. Smoothed residual patterns. Stock IDs are listed in the top corner of each panel. See Table 1 for stock names and Table 2 for model

names.

The RK and scam GCV models were identical for Celtic Sea cod
(stock 7), but the bootstrap results were not. This is because of the
different constraints used to estimate these models. For the RK
model, Rmax < maximum observed R. This constraint was not
used for fitting the scam SR curves, but it was used when deriving
MSY RPs. If the scam-predicted recruitment exceeded the
maximum observed R, then it was set equal to this maximum.
Such constraints are fairly arbitrary and indicate the sensitivity
of statistical inferences when the SR data are noisy.

Discussion

A non-parametric SR model that preserves the compensatory mor-
tality property (e.g. Quinn and Deriso, 1999) was demonstrated in
a simulated example to provide a more accurate estimation of the

SR relationship and equilibrium yield curve when there are good SR
data. The non-parametric approach performed fairly well in terms of
simulation bias and mean squared error for RP estimates compared
with the correct parametric model, and the approach performed
better compared with RP estimates based on incorrect parametric
models. The performance of the non-parametric model with nine
real datasets was equivocal. It performed about the same in terms
of prediction error (i.e. GCV statistic) compared with common SR
models (i.e. BH, RK, and HS). Nonetheless, it is a useful method
to evaluate the adequacy of proposed parametric models.

The non-parametric model was implemented using the scam
function in R (Pya, 2012), and the main advantage of the scam
package compared with Bravington et al. (2000) is ease of imple-
mentation. Anyone familiar with R should be able to implement
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Figure 6. Equilibrium vyield curves for nine stocks, with stock IDs listed in the top corner of each panel. See Table 1 for stock names and
Table 2 for model names. Grey lines indicate yields inferred from extrapolations of recruitment outside of the range of the stock—recruit data.

the method in a typical stock assessment working group meeting.
Smoothing approaches such as LOWESS are also useful for ex-
ploratory modelling of SR data. They can help orientate the eye
to patterns in the data. However, such unrestricted smoothers
are less useful for deriving RPs, and in particular MSY RPs.
These smoothers can also result in unrealistic SR relationships
caused by overfitting the substantial noise that is often present
in SR data time-series. This is less of a problem with the shape-
constrained non-parametric approach outlined herein.

Another potential advantage of the non-parametric SR model
is more “honest” CIs that do not depend on parametric model
assumptions that are very difficult to verify in practice. A boot-
strapped uncertainty analysis was used to propagate the

uncertainty about the SR relationship into CIs about MSY RPs.
In the simulated example, the bootstrapped CIs based on the non-
parametric SR model with GCV smoothing parameter covered the
true values for Fy;sy, whereas the CIs based on the BH, RK, and HS
models did not. In the real data examples, the CIs for Fysy based
on the BH, RK, and HS SR models usually barely overlapped or
did not overlap at all. This demonstrates that CIs for Fysy
derived from parametric SR models are sensitive to the parametric
assumptions. The overlap for By;sy was better. CIs based on the
non-parametric model were usually wider than the parametric
intervals, and much wider for some stocks, when the model was
made flexible by fixing the df to be 4. Even when the df was
fixed at 3, CIs for Fygy were substantially wider for five of nine
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Figure 7. Fysy with 95% bootstrap confidence intervals. Stock IDs
are listed in the top strip of each panel. See Table 1 for stock names
and Table 2 for model names. Scam upper limits were truncated
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Figure 8. Bsy with 95% bootstrap confidence intervals. Stock IDs
are listed in the top strip of each panel. See Table 1 for stock names
and Table 2 for model names.

stocks. As a result, these intervals usually overlapped the paramet-
ric SR model-based CIs. The non-parametric intervals reflected
much of the uncertainty due to SR model choice, which is import-
ant information in practice. Wide CIs for MSY RPs reflect some of
the substantial variability in stock productivity processes related to
unaccounted multispecies interactions and impacts of environ-
mental variability on recruitment (Overholtz, 1999) and others
aspects of productivity, as well as stock assessment error.

N. G. Cadigan

A surprising result was the consistency in the smoothed pattern
of the residuals obtained from fitting the various SR models. This
pattern was similar in eight of nine real data examples. It was not
present in the simulated example. The residual pattern suggests a
steeper decline in recruits per spawner at low stocks sizes than the
parametric or non-parametric SR models could accommodate.
The residual pattern was worse for the RK and HS models, but
still present for the BH and non-parametric models. It is possible
to generate this basic pattern in simulated data by increasing the
amount of recruitment immigration; however, this is not the
only mechanism. For example, Cadigan (2009) found that meas-
urement error in S tended to increase the Sao, and this is
another possible mechanism for the residual pattern. Another pos-
sible cause is unaccounted ageing error which can smear out and
reduce recruitment variability in the stock assessment, and make it
seem possible that low stock sizes can produce large recruitments
(i.e. higher slope at the origin).

The HS-based RPs were usually much more precise than the
other methods, but they seem risky in that the HS Fysy was
usually greater than Fy;sy values derived using other SR models,
and Bysy was usually much lower. This suggests the potential of
incorrectly concluding the stock is not being overfished using
HS-based RPs.

In the examples, it was necessary to impose constraints when
estimating and bootstrapping the parametric SR curves. It was
also necessary to impose constraints on the non-parametric esti-
mates of SR curves, and in particular the extrapolations beyond
the range of the data, when deriving MSY RPs. Such constraints
complicate statistical inferences which will not be accurate if the
constraints are wrong. MSY RPs will also contain additional un-
certainty related to how other productivity processes will evolve
in the future, but this was beyond the scope of this paper.

The variations in MSY RPs, as a function of the choice of SR
model, estimated for most of the stocks examined in this paper
would probably have substantial management implications if
management was based only on stock status relative to point esti-
mates of RPs. Fysy was less sensitive overall to the choice of SR
model; hence, evaluating stocks status in terms of F (i.e. Feyrrent/
Fygy) seems to be less sensitive to the choice of SR model than
evaluating status in terms of biomass (i.e. Beyrrent/Bumsy)- This sug-
gests that Fyigy is a more reliable RP than Bysy, which is a conclu-
sion others have reached (e.g. ICES, 2011).

The lower confidence limits for Fygy derived from the non-
parametric SR models in some examples (i.e. stocks 1-3, 6—8)
were much lower than the point estimates. Similarly, the upper
limits for Byisy were often much greater than the point estimates.
The latter was also true for the RK and BH models in some exam-
ples (i.e. stocks 5-7, and 9). This suggests that there can be con-
siderable uncertainty when evaluating the probability that
current F > Fygy, and current B < Bysy. This will be caused by
uncertainty in the values of the RPs and also uncertainty in the
values of current F and B. Hence, a management framework that
requires a low probability that current F > Fygy and current
B < Byisy may provide for little fishery yield when there is sub-
stantial uncertainty about the values of Fysy and Bysy-

Supplementary material
Supplementary material is available at the ICESJMS online version
of the paper and shows an example code for scam.
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